Self Adaptive Particle Filter
نویسنده
چکیده
The particle filter has emerged as a useful tool for problems requiring dynamic state estimation. The efficiency and accuracy of the filter depend mostly on the number of particles used in the estimation and on the propagation function used to re-allocate these particles at each iteration. Both features are specified beforehand and are kept fixed in the regular implementation of the filter. In practice this may be highly inappropriate since it ignores errors in the models and the varying dynamics of the processes. This work presents a self adaptive version of the particle filter that uses statistical methods to adapt the number of particles and the propagation function at each iteration. Furthermore, our method presents similar computational load than the standard particle filter. We show the advantages of the self adaptive filter by applying it to a synthetic example and to the visual tracking of targets in a real video sequence.
منابع مشابه
A New Modified Particle Filter With Application in Target Tracking
The particle filter (PF) is a novel technique that has sufficiently good estimation results for the nonlinear/non-Gaussian systems. However, PF is inconsistent that caused mainly by loss of particle diversity in resampling step and unknown a priori knowledge of the noise statistics. This paper introduces a new modified particle filter called adaptive unscented particle filter (AUPF) to overcome th...
متن کاملAn Adaptive Self-adjusting Bandwidth Bandpass Filter without IIR Bias
In this paper we introduce a simple, computationally inxepentsive, adaptive recursive structure for enhancing bandpass signals highly corrupted by broad-band noise. This adaptive algorithm, enhancing input signals, enables us to estimate the center frequency and the bandwidth of the input signal. In addition, an important feature of the proposed structure is that the conventional bias existing ...
متن کاملAn Adaptive Self-adjusting Bandwidth Bandpass Filter without IIR Bias
In this paper we introduce a simple, computationally inxepentsive, adaptive recursive structure for enhancing bandpass signals highly corrupted by broad-band noise. This adaptive algorithm, enhancing input signals, enables us to estimate the center frequency and the bandwidth of the input signal. In addition, an important feature of the proposed structure is that the conventional bias existing ...
متن کاملTuning of Extended Kalman Filter using Self-adaptive Differential Evolution Algorithm for Sensorless Permanent Magnet Synchronous Motor Drive
In this paper, a novel method based on a combination of Extended Kalman Filter (EKF) with Self-adaptive Differential Evolution (SaDE) algorithm to estimate rotor position, speed and machine states for a Permanent Magnet Synchronous Motor (PMSM) is proposed. In the proposed method, as a first step SaDE algorithm is used to tune the noise covariance matrices of state noise and measurement noise i...
متن کاملObject Tracking with an Evolutionary Particle Filter Based on Self-Adaptive Multi-Features Fusion
Particle filter algorithms are widely used for object tracking in video sequences, but the standard particle filter algorithm cannot solve the validity of particles ideally. To solve the problems of particle degeneration and sample impoverishment in a particle filter tracking algorithm, an improved object tracking algorithm is proposed, which combines ...
متن کامل